ON NON-HOMOGENEOUS TERNARY CUBIC DIOPHANTINE EQUATION
 $w^{2}-z^{2}+2 w x-2 z x=x^{3}$

S.Vidhyalakshmi

Assistant Professor, Department of Mathematics Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

M.A.Gopalan
 Professor,

Department of Mathematics,
Shrimati Indira Gandhi College,
Affiliated to Bharathidasan University, Trichy-620 002,
Tamil Nadu, India.
J. Shanthi, T. Mahalakshmi

Assistant Professor,
Department of Mathematics,
Shrimati Indira Gandhi College,
Affiliated to Bharathidasan University, Trichy-620 002,
Tamil Nadu, India.

Abstract- The non-homogeneous ternary cubic Diophantine equation $w^{2}-z^{2}+2 w x-2 z x=x^{3}$ is analyzed for its patterns of non-zero distinct integral solutions. A few relations between the solutions and special number patterns are presented.

Keywords- Ternary cubic Non- Homogeneous cubic, Integral solutions.

Notations:
$\mathrm{t}_{\mathrm{m}, \mathrm{n}}=\mathrm{n}\left(1+\frac{(\mathrm{n}-1)(\mathrm{m}-2)}{2}\right)$
$\mathrm{P}_{\mathrm{n}}^{\mathrm{r}}=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}(\mathrm{r}-2)-(\mathrm{r}-5))}{6}$
$\mathrm{CP}_{\mathrm{k}}^{4}=\frac{4 \mathrm{k}^{3}+2 \mathrm{k}}{6}, \quad \mathrm{CP}_{\mathrm{k}}^{8}=\frac{8 \mathrm{k}^{3}-2 \mathrm{k}}{6}$

I. INTRODUCTION

The Diophantine equation offers an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-15] for cubic equations with three unknowns. This
communication concerns with yet another interesting equation $\mathrm{w}^{2}-\mathrm{z}^{2}+2 \mathrm{wx}-2 \mathrm{zx}=\mathrm{x}^{3}$ representing non-homogeneous cubic with three unknowns for determining its infinitely many non-zero integral points. A few relations between the solutions and special number patterns are presented.

II. METHOD OF ANALYSIS

The given non-homogeneous ternary cubic diophantine equation is
$w^{2}-z^{2}+2 w x-2 z x=x^{3}$
On completing the squares,(1) is written as
$\mathrm{P}^{2}-\mathrm{Q}^{2}=\mathrm{x}^{3}$
Where
$\mathrm{P}=\mathrm{w}+\mathrm{x}, \mathrm{Q}=\mathrm{z}+\mathrm{x}$
Write (2) as the system of double equations as below:
$P+Q=x^{3}$,
$\mathrm{P}-\mathrm{Q}=1$
Solving the above system of equations, one obtains
$\mathrm{x}=2 \mathrm{k}+1$
and
$\mathrm{P}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}+1, \mathrm{Q}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+3 \mathrm{k}$

In view of (3), we have
$\mathrm{w}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+\mathrm{k}, \mathrm{z}=4 \mathrm{k}^{3}+6 \mathrm{k}^{2}+\mathrm{k}-1$
Thus,(4) and (6) represent the integer solutions to (1).
Relations between the solutions and special number patterns:
I. Each of the following expressions is a square multiple of 2
(i). $\mathrm{w}-\mathrm{X} * \mathrm{t}_{3,2 \mathrm{k}}$
(ii). $\mathrm{Z}+1-\mathrm{X} * \mathrm{t}_{3,2 \mathrm{k}}$
(iii). $\mathrm{w}+\mathrm{t}_{3,2 \mathrm{k}}-3 * \mathrm{P}_{2 \mathrm{k}}^{3}$
(II). $w=-12 t_{3, k}+24 * P_{k}^{3}-k$
(III). $\mathrm{w}=-\mathrm{t}_{14, \mathrm{k}}+24 * \mathrm{P}_{\mathrm{k}}^{3}-12 \mathrm{k}$
(IV). $w-x=t_{6, k}+8 * P_{k}^{5}-1$
(V).Each of the following is a square multiple of 6
(i). $\mathrm{w}-6 \mathrm{CP}_{\mathrm{k}}^{4}+\mathrm{k}$
(ii). $w+z+x-6 C P_{k}^{8}+12 t_{3, k}$

For simplicity and brevity, the other choices of solutions to
(1) are exhibited below:

Choice 1:
$\mathrm{x}=\mathrm{k}, \mathrm{z}=\mathrm{t}_{3, \mathrm{k}-1}-\mathrm{k}, \mathrm{w}=\mathrm{t}_{3, \mathrm{k}}-\mathrm{k}$
Choice II:

$$
\mathrm{x}=2 \mathrm{na}, \mathrm{z}=2 \mathrm{n}^{3} \mathrm{a}^{2}-(2 \mathrm{n}+1) \mathrm{a}, \mathrm{w}=2 \mathrm{n}^{3} \mathrm{a}^{2}-(2 \mathrm{n}-1) \mathrm{a}
$$

Choice III

$$
\mathrm{x}=2 \mathrm{na}, \mathrm{z}=\mathrm{a}^{2}-2\left(\mathrm{n}^{3}+\mathrm{n}\right) \mathrm{a}, \mathrm{w}=\mathrm{a}^{2}+2\left(\mathrm{n}^{3}-\mathrm{n}\right) \mathrm{a}
$$

Choice 1V:

$$
x=2 n a, z=2 n^{3} a^{3}-(2 n a+1), w=2 n^{3} a^{3}-(2 n a-1)
$$

Choice V:
$x=2 n a, z=a^{3}-2 n\left(n^{2}+a\right), w=a^{3}+2 n\left(n^{2}-a\right)$

III.CONCLUSION

In this paper, we have made an attempt to obtain all integer solutions to (1). To conclude, one may search for integer solutions to other choices of ternary cubic diophantine equations.

IV. REFERENCE

[1]. Dickson,L.E;(1952) History of Theory of Numbers, vol 2, Chelsea publishing company, New York.
[2]. Mordell, L.J;(1969)Diophantine Equations, Academic press, London..
[3]. Carmichael, R.D;(1959), The theory of numbers and Diophantine analysis, New York, Dover.
[4]. Gopalan,M..A;,Srividhya,G.(2011),Integralsolutionsoft ernarycubicdiophantineequation $x^{3}+y^{3}=z^{2}$ Acta Ciencia Indica, Vol XXXVII, No.4,(Pp 805-808).
[5]. Gopalan,M.A;Vidhyalakshmi,S;Thiruniraiselvi,N,(2013), On Non-Homogeneous Cubic Equation With Three Unknowns
$\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{z}^{2}=2 \mathrm{kxyz}$, BOMSR,Vol.1(1), (Pp 1315).
[6]. Gopalan. M. A; Vidhyalakshmi. S; Lakshmi. K, (2013), Latic points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$, Impact.J.Sci. Tech, Vol.7, No. 1, (Pp 21-25).
[7]. Gopalan. M. A; Vidhyalakshmi. S; Lakshmi. K, (2013), Latic points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$, Impact.J.Sci. Tech, Vol.7, No. 1, (Pp 51-55).
[8]. Vidhyalakshmi,S ;Usharani,T.R;Gopalan,M.A,(2014), Integral Solutions Of The Ternary Cubic Equation $5\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-9 \mathrm{xy}+\mathrm{x}+\mathrm{y}+1=35 \mathrm{z}^{3}$, IJRET,Vol:0 3,Issue: 11,(Pp 449-452).
[9]. Gopalan,M.A; Thiruniraiselvi,N;Sridevi,R,(2015), On The Ternary Cubic Equation $5\left(x^{2}+y^{2}\right)-8 x y=74\left(k^{2}+s^{2}\right) z^{3}$,IJMRME, Vol.1(1),(Pp 317-319).
[10]. Gopalan. M. A; Vidhyalakshmi. S; Shanthi. J; Maheswari.J, (2015), On ternary cubic Diophantine equation $\quad 3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, IJAR, Volume 1, Issue 8, (Pp 209-212).
[11]. Janaki,G and Saranya ,P;(2016), On theTernary Cubic Diophantine

Equation
$5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$,
International Journal of Science and Research- online, Vol 5, Issue3, (Pp 227-229).
[12]. Gopalan,M.A, Sharadha Kumar,(2018), "On the nonhomogeneous ternary cubic equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=111 z^{3}$ International Journal of Engineering and Techniques, 4(5), (Pp105-107).
[13]. Sharadha Kumar, Gopalan,M.A; (2019),"On The Cubic Equation $x^{3}+y^{3}+6(x+y) z^{2}=4 w^{3} "$, JETIR, 6(1), (Pp 658-660).
[14]. Vijayasankar,A; Dhanalakshmi,G; Sharadha Kumar, Gopalan,M.A;(2020), On The Integral Solutions To The Cubic Equation With Four Unknowns $x^{3}+y^{3}+(x+y)(x-y)^{2}=16 z^{2}$ International Journal For Innovative Research In Multidisciplinary Field, 6(5), (Pp 337-345).
[15]. Vijayasankar,A; Sharadha Kumar Gopalan,M.A,(2021), "On Non-Homogeneous Ternary Cubic Equation $x^{3}+y^{3}+x+y=2 z\left(2 z^{2}-\alpha^{2}+1\right)$ International Journal of Research Publication and Review2(8),(Pp 592-598).

